Статика твёрдого тела
Статика изучает равновесие тел под действием приложенных к ним сил. Равновесие — это состояние тела, при котором каждая его точка остаётся всё время неподвижной в некоторой инерциальной системе отсчёта. Условием равновесия материальной точки является равенство нулю равнодействующей (т. е. векторной суммы) всех сил, приложенных к точке. В этом случае наша точка будет двигаться равномерно и прямолинейно в произвольной инерциальной системе отсчёта. Значит, система отсчёта, связанная с точкой, также будет инерциальной, и в ней точка будет покоиться.
В случае твёрдого тела ситуация сложнее. Прежде всего, важно учитывать точку приложения каждой силы.
- Сила тяжести приложена в центре тяжести тела. Для тела простой формы центр тяжести совпадает с центром симметрии.
- Силы упругости и трения приложены в точке или в плоскости контакта тела с соприкасающимся телом.
Прямая линия, проходящая через точку приложения вдоль вектора силы, называется линией действия силы. Оказывается, точку приложения силы можно переносить вдоль линии
её действия — от этого механическое состояние тела не изменится (в частности, равновесие не
нарушится).
Для равновесия твёрдого тела недостаточно потребовать равенства нулю векторной суммы
всех приложенных к телу сил.
В качестве примера рассмотрим пару сил — так называются две равные по модулю противоположно направленные силы, линии действия которых не совпадают. Пусть пара сил и приложена к твёрдому стержню (Рисунок 1).
Как должна быть направлена линия действия силы, чтобы тело стало вращаться вокруг неподвижной оси? Для начала заметим следующее.
- Если линия действия силы параллельна данной оси, то вращения не будет.
- Если линия действия силы пересекает данную ось, то вращения не будет.
В каждом из этих случаев действие силы вызывает лишь деформацию твёрдого тела. Чтобы началось вращение, линия действия силы и ось вращения должны быть скрещивающимися прямыми. Без ограничения общности можно считать эти прямые перпендикулярными друг другу. Мы всегда можем этого добиться, разложив силу на две составляющие — параллельную и перпендикулярную оси вращения — и отбросив параллельную составляющую как не вызывающую
вращения. Поэтому везде далее мы считаем, что все силы, действующие на тело, перпендикулярны оси вращения.
Момент силы
Плечо силы — это расстояние от оси вращения до линия действия силы (т. е. длина общего
перпендикуляра к двум этим прямым). В качестве примера на Рисунке 2 изображён диск, к которому приложена сила . Ось вращения перпендикулярна плоскости чертежа и проходит через точку O. Плечом силы является
величина = OH, где H — основание перпендикуляра, опущенного из точки O на линию действия силы.
Момент силы относительно оси вращения — это произведение силы на плечо:
Чтобы учесть также направление вращения, вызываемого действием силы, моменту силы приписывают знак. Именно, момент силы считается положительным, если сила стремится поворачивать тело против часовой стрелки, и отрицательным, если по часовой стрелке.
Условия равновесия
Если тело имеет неподвижную ось вращения и если алгебраическая сумма моментов всех сил относительно этой оси обращается в нуль, то тело будет находиться в равновесии. Это так называемое правило моментов. Оказывается, что в этом случае обращается в нуль алгебраическая сумма моментов всех сил относительно любой другой оси, параллельной оси вращения.
В общем случае, когда твёрдое тело может совершать как поступательное, так и вращательное движение, мы имеем два условия равновесия.
- Равна нулю векторная сумма всех сил, приложенных к телу.
- Равна нулю алгебраическая сумма моментов всех сил, приложенных к телу, относительно данной оси вращения или любой другой оси, параллельной данной.
Так, в примере на Рисунке 1 алгебраическая сумма моментов пары сил не обращается нуль (оба момента положительны). Поэтому стержень не находится в равновесии. При решении задач удобно использовать сформулированные выше условия равновесия в следующем виде.
- Силы уравновешены вдоль любой оси.
- Суммарный момент сил, вращающих тело в одну сторону, равен суммарному моменту сил, вращающих тело в другую сторону.